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In this contribution, the generalized thermodynamic formalism is applied to a nonhyperbolic dynami-
cal system in two comparable situations. The change from one situation to the other is small in the sense
that the grammar and the singularities of the system are preserved. For the discussion of the effects gen-
erated by this change, the generalized entropy functions are calculated and the sets of the specific scaling
functions which reflect the phase transition of the system are investigated. It is found that even under

mild variations, this set is not invariant.
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I. INTRODUCTION

After the discovery that fractal geometry is relevant
for the characterization of chaotic systems, much effort
was spent on the evaluation of fractal dimensions and re-
lated indicators such as Lyapunov exponents and entro-
pies. Many theoretical investigations concentrated on
the connection between these quantities. Soon it was
realized that, for a refined description, fluctuations
should be taken into account [1-8]. Investigations of the
fluctuation spectra led then to the discovery of “phase
transitions”. This phenomenon, which must be under-
stood in the sense of the thermodynamic formalism [9], is
connected with a non-Gaussian fluctuation behavior of
the system (in the sense of large deviation theory), such
that a nonanalytic dependence of the fluctuation spec-
trum as a function of the deviation is obtained. The effect
has been observed in great variety in model systems and
in experiments (chemical systems, laser experiments [10],
and semiconductors [11]) and is thought to be of generic
nature. Nonhyperbolic maps, such as the intermittent
map or the fully developed logistic map, are characteris-
tic models for this effect. Hyperbolic maps are not cap-
able of producing this phenomenon if only finite range
correlations are permitted [9].

A striking feature which comes along with a phase
transition of a system is the fact that often not all of the
specific spectra (among which we have the spectra of
Lyapunov exponents, entropies, and fractal dimensions,
to name the most prominent ones [10,12] witness the
phase transition. It is therefore of interest to discuss in
more detail the mechanism which leads to this
phenomenon.

For this problem, the usefulness of an approach via the
generalized or bi-variate thermodynamical formalism
[12-20] is evident. In this approach, the description of a
system is realized with the help of symbol sequences. A
specific symbol appears with a certain probability. As a
consequence of its appearance, the support in the phase
space which is compatible with the past of the symbol se-
quence is scaled down by a length scale associated with
that symbol (as a typical example we mention the Cantor
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set with measure). The scaling properties due to the
length scales are thus interpreted as scaling properties of
the support, on which the measure (probability) is distri-
buted according to rules which can be specified by a mea-
sure map. As in the “ordinary” thermodynamic formal-
ism, the different contributions obtained from strings of n
symbols are interpreted as an ensemble. From its parti-
tion function we derive the free energy (or ‘“‘pressure”)
and the associated entropy function (called the general-
ized entropy function). From the latter, the well-known
entropylike scaling functions of generalized Lyapunov ex-
ponents and fractal dimensions are obtained by restric-
tion.

In this contribution we investigate the stability of the
set of specific entropylike scaling functions which witness
the phase transition of a system. As the specific model
for our investigation we consider a system for which the
scaling of the support is generated by a hyperbolic map of
three monotonous, fully extended branches which can be
labeled by the symbols A4, B, and C. Symbol B is ob-
served with fixed probability. The probability for the
other two symbols 4 and C is chosen according to the
elements of the binary partition generated by the fully
developed parabola

g:x—4(l—x)x , (1)

scaled by a factor to normalize the probabilities [19,20].
In this way, the system is provided with an unrestricted
ternary grammar (binary grammars can lead to some de-
generacies of the generalized entropy function [20]). The
nonhyperbolicity of the fully developed parabola leads to
a phase transition of the system. We show that, for this
system, the set of the specific entropy functions which
witness the phase transition is not invariant even under
mild changes of the length and the probability scales.

For the generic case of restricted symbolic representa-
tions it was shown [17] that calculations based on the
“canonical” partition function (2) lead to severe numeri-
cal problems. In the case of finite grammatical rules,
these can be overcome by the use of appropriate zeta
functions. For f and g tent maps, a hyperbolic two-scale
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Cantor set with measure is obtained. Note that also for
maps from the interval the present approach can be ap-
plied. While the behavior of the support is given by the
map itself, the measure map has to be determined from
additional considerations.

II. THERMODYNAMICS

The generalized entropy function, from which we wish
to discuss the phase transitionlike effects, is built on the
partition function [1]:

Zg(gBm)= 3  Ifpf. @
JEWU,...,M"

Here, M denotes the number of symbols used for the sym-
bolic description, /; the size of the jth region R; of the
partition, and p; the probability of falling into this re-
gion. If local scaling of / and p in n is assumed (where n
denotes the ‘“level” of the partition), the length scale /
and the probability p give rise to exponents € and «
through

L=e ", 3)
pi=l". @)

With the partition function, the generalized free energy
F can be associated [10,12]:
F;(g,B)= lim Lln > e "\atP , (5)
noe e, M

where In denotes the natural logarithm. Note that for
G(B,q)=—(1/B)F4(q,B), the term “Gibbs potential” is
used. In the presence of phase transitions, it is useful to
consider the following iterative equation instead:

A'(q’B)Qn +1(x’y)
_ Q,(f 1 (x),g 7 (»)
= TmelfUTTNIPlg (gt Nl

(the “generalized” or ‘“bivariate Frobenius-Perron equa-
tion” [15,19-23]). Here, € labels the choice being made
between the inverses of the maps f and g. While iterat-
ing, the sum is performed for f and g over the same sym-
bolic substrings. Starting from any smooth density
Qo(x,y) in (0,1)X(0,1), a unique eigenvalue A(q,3) en-
sures convergence towards a finite Q(x,y). The depen-
dence on x,y disappears for large n, for x,y in the invari-
ant set. The free energy arises then as the largest eigen-
value of the associated Frobenius-Perron operator

L(Q(x,»))=Ag,B)Q (x,y) . @)

In order to derive the generalized free energy or Gibbs
potential, the relation

Mg,B)=exp[Fs(q,B)] (8)

can be used. The properties of the eigenvalues and asso-
ciated eigenfunctions provide the key tool in understand-
ing phase transitions.

As mentioned before, we are interested in the general-
ized entropy function which will show characteristic,

, B—>X® (6)

generic properties for our model. The generalized entro-
py Sg(a,¢€) is related to the generalized free energy Fj
via [10,12,15]

S¢la,e)=F4(q,B)+(ag+B)x . 9)

In this formula, those values of a and € which lead to the
maximum of the Z; have been chosen (as a function of
given g and f3). The free energy F; or the generalized en-
tropy S describe in this way the scaling behavior of the
dynamical system equivalently. By restriction, several
specific entropy functions are obtained. For g =0, we ob-
tain the thermodynamic formalism, which is based on
length scales only [3—8]. In this case the associated free
energy and entropy are denoted by F;(B) and S;(¢), re-
spectively. The generalized Lyapunov exponents can be
calculated from FG(q,B)|q=1; we denote the associated
scaling function by ¢(A). Furthermore, the fractal di-
mensions [1,24,25] are given by the zeros B(q) of
F;(q,B) for given gq. They give rise to the entropylike
function f (a) [1].

In the thermodynamic formalism introduced by
Ruelle, Eq. (5) can be interpreted as the isobar-isotherm
partition function of an elastic Ising chain with long-
range, multispin interaction. Accordingly, points of
nonanalytical behavior of the thermodynamic function
are interpreted as phase transitions. The separation be-
tween two phases is characterized as the set of points
where F; is not real analytic as a function of the parame-
ters g and .

For the numerical evaluation, the application of Eq. (6)
is straightforward [19,26] [for nonhyperbolic systems, Eq.
(6) still holds, but its derivation needs more care]. The
nonhyperbolicity of the support, or of the measure (as in
our example), respectively, usually comes from the ex-

0.5

€

FIG. 1. Support of Sg(a,e) for the first set of parameter
values. The lines are indicated along which the functions
Sc(e),8(A) (the Legendre transform of the Renyi entropies) and
f(a) are evaluated (dash-double-dotted, dashed, and dash-
dotted lines, respectively). The corner point generated by the
nonhyperbolicity is indicated by N. Contour lines are shown.
The critical line is denoted by L.
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FIG. 2. Graph of g(A) (the Legendre transform of the Renyi
entropies): Note the straight-line tail which is characteristic for
phase transitions.

istence of a local maximum of these maps or from singu-
larities in their invariant sets. By iteration of such a sys-
tem, in addition to A, (gq,B), obtained from smooth,
singularity free eigenfunctions Q (x,y), additional eigen-
values A, (g,B) are obtained when starting from singular
initial functions [22,23]. The system chooses its free en-
ergy from the requirement F; =max(Fg,, Fg ), where
both contributions to the generalized free energy are
smooth functions of their arguments. As the two indivi-
dual functions intersect, a first-order phase transition is
created. Due to the smoothness of the arguments, points
of such a nonanalytical behavior must be connected. In
this way they form the “critical line” [19,20].

III. STABILITY OF PHASE TRANSITIONS

Earlier [16—18] the form of the generalized entropy
function for hyperbolic models, its relation to the more
specific entropy functions S;(g), ®(A), and f (a), and the
connection with experimentally obtained scaling func-
tions were elucidated [10,11,15]. Hyperbolic systems lead
to strictly convex specific entropy functions, whereas in
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the more relevant nonhyperbolic case linear segments are
obtained [27-33]. As for the free energy, in the surface
of the generalized entropy function a critical line is ob-
tained [20].

The important question we would like to address is the
following: What kind of parameter variations are needed
to change the set of the specific entropylike scaling func-
tions which witness the phase transition of the system?
Clearly an additional nonhyperbolicity will be sufficient,
if appropriately chosen. However, we would like to know
whether a change in the length and probability scales
only can be sufficient too (this could be done with preser-
vation of the already existing singularities and grammar).
The generalized entropy function depends in a nontrivial
way on the length and on the probability scales. There-
fore, the occurrence of phase transitions in the specific
entropy spectra is not determined by the critical line
alone, but also depends from the range which is accessi-
ble for the scaling variables a and €. This can be illus-
trated by two examples provided by our model. For the
first model, as parameters the length scales
l;lB’c=4.0,3.5,4.5 and the probabilities p,pc
=0.3,0.4,0.3 are chosen. Note that p , +p-=0.6 is the
total probability for obtaining a measure designed by the
fully developed parabola. The ‘“internal” conditional
probabilities are assigned according to the partition of
the interval as generated from the preimages of the criti-
cal point of the parabola. The generalized entropy func-
tion, which reflects the scaling properties of the system,
then has the following form (cf. Fig. 1): Emanating from
the nonhyperbolicity labeled by N, a sheet touches the
hyperbolic part along the critical line L. Those of the
specific entropy functions Sg(€), ¢(A), and f(a) which
cross the critical line inherit the phase-transition effect.
For the present situation, this is the case only for the
Legendre transform of the Renyi entropies (Fig. 2). Note
the linear part on the right-hand side of the function.
The Lyapunov scaling function, the scaling function be-
longing to the ‘““usual free energy” based on length scales,
and f(a) show no phase transitions. Their graphs are
strictly convex. A refined explanation can be given, tak-
ing into account the range of the underlying variables: (1)
Since point A is higher than the nonhyperbolicity N,

FIG. 3. Support of Sg(a,€) for the second
set of parameter values. The lines are indicat-
ed along which the functions Sg(g),g(A) (the
Legendre transform of the Renyi entropies),
and f(a) are evaluated (dash-double-dotted,
dashed, and dash-dotted lines, respectively).
Contour lines are shown; the critical line is
denoted by L, the corner point generated by
the nonhyperbolicity by N.
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FIG. 4. Graph of f(a) for the second parameter set. The
function is no more strictly convex, but indicates the phase tran-
sition of the system (straight-line behavior on the right-hand
side).

f (a) shows no phase transition [because a is the relevant
variable for f(a)]. (2) Sg(e) has no phase transition.
This inherent property of the model is reflected by the
fact that N is on a vertical line with C. (3) g(A) has a
phase transition since eay > ea 4, eag [the relevant scale
for g(A)is ea].

In order to generate a phase transition in f(a), we
would like to have N at a higher a value than point 4.
This can be achieved by different “crossover” transitions
which preserve the number of the elements of the parti-
tion and the type of the singularities, but change the or-
der of the sizes of the scales. For example, the choice of
the second parameter set (/ ;’};,C =35.5,6.0,4.5 and proba-
bility scales p 4 5 c =0.4,0.2,0.4) leads to the desired sit-
uation. Figure 3 shows the generalized entropy function
for the changed parameter values. As can be seen, f(a)
now crosses the critical line and obtains a phase transi-
tion (cf. Fig. 4); the phase transition in the Renyi entro-
pies is no longer present (Fig. 5). This is due to the rela-
tion eay <eay, which holds for the new parameter
values. For completeness we mention that the appear-
ance of additional hyperbolic scaling elements can lead to
similar effects.
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FIG. 5. Graph of g (A) for the second parameter set, showing
the absence of phase transitions in this spectrum.

IV. CONCLUSIONS

In this contribution, it has been shown that a small
variation of external parameters may lead to a change of
the set of entropy functions which witness the phase tran-
sition of the system. An improved explanation of the oc-
currence of phase transitions has been given from the
point of view of the generalized entropy function. The
explanation goes beyond the existence of a critical line.
It shows that for a complete characterization of the phase
transition properties of a system the generalized (in the
sense of bivariate) thermodynamic formalism can be used
with profit. The insight gained leads to a better under-
standing of the changes in a system under variation of
external parameters. For experimental systems, first pro-
gress towards a partition of the phase space by using
periodic orbits has already been achieved [34]; the length
scales and the probabilities obtained from that approach
can then be used as the input for the generalized thermo-
dynamic formalism. In this sense, the results and tools
outlined in this contribution are also of interest for exper-
imental systems. They may, e.g., help to direct experi-
mental systems towards working conditions for which
phase transitions appear in specific spectra.
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